Last updated: 2023-01-09

Checks: 7 0

Knit directory: gsmash/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20220606) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 2779b13. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Untracked files:
    Untracked:  analysis/size_of_sigma2_on_convergence.Rmd

Unstaged changes:
    Modified:   analysis/overdispersed_splitting.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/run_PMF_on_pbmc_more_iterations.Rmd) and HTML (docs/run_PMF_on_pbmc_more_iterations.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 2779b13 DongyueXie 2023-01-09 wflow_publish("analysis/run_PMF_on_pbmc_more_iterations.Rmd")
html 42f0de4 DongyueXie 2023-01-05 Build site.
Rmd 25e29e2 DongyueXie 2023-01-05 wflow_publish("analysis/run_PMF_on_pbmc_more_iterations.Rmd")

Introduction

I have a previous result run the very initial version of the splitting PMF. Now I revise the code and re-run the model. THe main diff is a. run vga 1 iter every big iteration; b. 1000 iterations; c. add 1 dimension each add_greedy attempt.

I set the scaling factors as \(s_{ij} = \frac{y_{i+}y_{+j}}{y_{++}}\). For comparison, I also fit flash on transformed count data, as \(\tilde{y}_{ij} = \log(1+\frac{y_{ij}}{s_{i}}\frac{a}{0.5})\) where \(s_i=\sum_j y_{ij}\), \(a = median(s_{i})\).

library(fastTopics)
library(Matrix)
library(stm)
data(pbmc_facs)
counts <- pbmc_facs$counts
table(pbmc_facs$samples$subpop)

 B cell   CD14+   CD34+ NK cell  T cell 
    767     163     687     673    1484 
fit = readRDS('/project2/mstephens/dongyue/poisson_mf/pbmc3k/pbmc_splitting_point_normal_vga1.rds')
plot(fit$K_trace, ylab='K',xlab='iterations')

Version Author Date
42f0de4 DongyueXie 2023-01-05
plot(fit$elbo_trace,ylab='elbo',xlab='iterations',type='l')

Version Author Date
42f0de4 DongyueXie 2023-01-05
plot(colSums(counts/c(rowSums(counts)))/dim(counts)[1],fit$sigma2,xlab='gene mean count(after library size adjustment)')

Version Author Date
42f0de4 DongyueXie 2023-01-05
plot(colSums(counts==0)/dim(counts)[1],fit$sigma2,xlab='sparsity')

Version Author Date
42f0de4 DongyueXie 2023-01-05

Visualize loadings

source('code/poisson_STM/plot_factors.R')
cell_names = as.character(pbmc_facs$samples$subpop)
plot.factors(fit$fit_flash,cell_names,title='splitting PMF')

Version Author Date
42f0de4 DongyueXie 2023-01-05
fit_flashier = readRDS('/project2/mstephens/dongyue/poisson_mf/pbmc3k/flash_pbmc3k.rds')
plot.factors(fit_flashier,cell_names,title='flashier')

Version Author Date
42f0de4 DongyueXie 2023-01-05
source('code/poisson_STM/plot_factors_general.R')
fit_glmpca_poi = readRDS('/project2/mstephens/dongyue/poisson_mf/pbmc3k/glmpca_pbmc3k_poi.rds')
plot.factors.general(fit_glmpca_poi$loadings,cell_names,title='glmpca poi')

Version Author Date
42f0de4 DongyueXie 2023-01-05
fit_glmpca_nb = readRDS('/project2/mstephens/dongyue/poisson_mf/pbmc3k/glmpca_pbmc3k_nb.rds')
plot.factors.general(fit_glmpca_nb$loadings,cell_names,title='glmpca nb')

Version Author Date
42f0de4 DongyueXie 2023-01-05

run time analysis

fit$run_time
Time difference of 10.15867 hours
lapply(fit$run_time_break_down,mean)
$run_time_vga_init
Time difference of 28.89131 secs

$run_time_flash_init
Time difference of 71.49468 secs

$run_time_vga
[1] 11.04436

$run_time_flash_init_factor
[1] 4.846896

$run_time_flash_greedy
[1] 0.4588499

$run_time_flash_backfitting
[1] 13.73861

$run_time_flash_nullcheck
[1] 1.401617

Latent variable

Take a look at the latent M in splitting PMF model. M is the posterior mean of \(q_\mu = N(\mu;m,v)\).

  1. What are M’s corresponds to zero Ys? Large Ys?

  2. How does the M compared to GLMPCA’s latent representation?

Histogram of latent variable corresponding to y = 0.

hist(fit$fit_flash$flash.fit$Y[as.vector(counts==0)],breaks=100,xlab='splitting PMF latent var size for those Y=0',main='')

summary(fit$fit_flash$flash.fit$Y[as.vector(counts==0)])
      Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
-17.532822  -0.000597  -0.000043  -0.021565  -0.000001   3.997050 

It seems that most of them are very close to 0? Let’s set probability = TRUE and restrict ylim to (0,0.2).

hist(fit$fit_flash$flash.fit$Y[as.vector(counts==0)],breaks=200,xlab='splitting PMF latent var size for those Y=0',main='',probability = T,ylim=c(0,0.2))

Look at GLMPCA:

hist(tcrossprod(as.matrix(fit_glmpca_poi$loadings),as.matrix(fit_glmpca_poi$factors))[as.vector(counts==0)],breaks=100,xlab='GLMPCA latent var size for those Y=0',main='')

summary(tcrossprod(as.matrix(fit_glmpca_poi$loadings),as.matrix(fit_glmpca_poi$factors))[as.vector(counts==0)])
     Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
-32.12124  -0.99826   0.63654  -0.05514   1.36053   9.60655 

The GLMPCA latent vraibles are less concentrated around 0. Maybe this is because it does not induce sparsity on L and F.

Histogram of latent variable corresponding to y > 0.

hist(fit$fit_flash$flash.fit$Y[as.vector(counts>0)],breaks=100,xlab='splitting PMF latent var size for those Y>0',main='')

summary(fit$fit_flash$flash.fit$Y[as.vector(counts>0)])
    Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
-8.96516  0.01205  0.04553  0.08838  0.11864  7.19377 

Let’s limit ylim to (0,1), and set probability = TRUE.

hist(fit$fit_flash$flash.fit$Y[as.vector(counts>0)],breaks=200,xlab='splitting PMF latent var size for those Y>0',main='',ylim=c(0,1),probability = T,col=rgb(1,0,0,1/4))
abline(v = 0,lty=2)

hist(tcrossprod(as.matrix(fit_glmpca_poi$loadings),as.matrix(fit_glmpca_poi$factors))[as.vector(counts>0)],breaks=100,xlab='GLMPCA latent var size for those Y>0',main='')

summary(tcrossprod(as.matrix(fit_glmpca_poi$loadings),as.matrix(fit_glmpca_poi$factors))[as.vector(counts>0)])
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
-8.2505  0.7475  1.1542  1.2377  1.6455 11.1552 

Look at how many non-zeros are there in the Y:

hist(log(counts[counts>0]),breaks = 100)
<sparse>[ <logic> ]: .M.sub.i.logical() maybe inefficient

# The latent variable from splitting PMF seems to be very symmetric for those corresponding to $Y>0$. 
h_smaller = hist(log(counts[(fit$fit_flash$flash.fit$Y[as.vector(counts>0)])<0]),breaks = 100,main='',xlab='')
h_larger = hist(log(counts[(fit$fit_flash$flash.fit$Y[as.vector(counts>0)])>0]),breaks = 100,main='',xlab='')

plot( h_larger, col=rgb(0,0,1,1/4), xlim=c(0,5)) 
plot( h_smaller, col=rgb(1,0,0,1/4), xlim=c(0,5),add=T) 
legend('topright',c('>0','<0'),fill=c(rgb(0,0,1,1/4),rgb(1,0,0,1/4)),)

sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)

Matrix products: default
BLAS:   /software/R-4.1.0-no-openblas-el7-x86_64/lib64/R/lib/libRblas.so
LAPACK: /software/R-4.1.0-no-openblas-el7-x86_64/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C         LC_TIME=C           
 [4] LC_COLLATE=C         LC_MONETARY=C        LC_MESSAGES=C       
 [7] LC_PAPER=C           LC_NAME=C            LC_ADDRESS=C        
[10] LC_TELEPHONE=C       LC_MEASUREMENT=C     LC_IDENTIFICATION=C 

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] ggplot2_3.4.0      stm_1.2.8          Matrix_1.5-3       fastTopics_0.6-142
[5] workflowr_1.6.2   

loaded via a namespace (and not attached):
  [1] mcmc_0.9-7         bitops_1.0-7       matrixStats_0.59.0
  [4] fs_1.5.0           progress_1.2.2     httr_1.4.4        
  [7] rprojroot_2.0.2    tools_4.1.0        bslib_0.2.5.1     
 [10] utf8_1.2.2         R6_2.5.1           irlba_2.3.5.1     
 [13] uwot_0.1.14        DBI_1.1.1          lazyeval_0.2.2    
 [16] colorspace_2.0-3   withr_2.5.0        wavethresh_4.7.2  
 [19] tidyselect_1.2.0   prettyunits_1.1.1  ebpm_0.0.1.3      
 [22] compiler_4.1.0     git2r_0.28.0       cli_3.5.0         
 [25] quantreg_5.94      SparseM_1.81       plotly_4.10.1     
 [28] labeling_0.4.2     horseshoe_0.2.0    sass_0.4.0        
 [31] smashrgen_1.1.1    caTools_1.18.2     flashier_0.2.34   
 [34] scales_1.2.1       SQUAREM_2021.1     quadprog_1.5-8    
 [37] pbapply_1.6-0      mixsqp_0.3-48      stringr_1.4.0     
 [40] digest_0.6.30      rmarkdown_2.9      deconvolveR_1.2-1 
 [43] MCMCpack_1.6-3     vebpm_0.3.8        pkgconfig_2.0.3   
 [46] htmltools_0.5.3    highr_0.9          fastmap_1.1.0     
 [49] invgamma_1.1       htmlwidgets_1.5.4  rlang_1.0.6       
 [52] rstudioapi_0.13    farver_2.1.1       jquerylib_0.1.4   
 [55] generics_0.1.3     jsonlite_1.8.3     dplyr_1.0.10      
 [58] magrittr_2.0.3     smashr_1.3-6       Rcpp_1.0.9        
 [61] munsell_0.5.0      fansi_1.0.3        RcppZiggurat_0.1.6
 [64] lifecycle_1.0.3    stringi_1.6.2      whisker_0.4       
 [67] yaml_2.3.6         MASS_7.3-54        plyr_1.8.6        
 [70] Rtsne_0.16         grid_4.1.0         parallel_4.1.0    
 [73] promises_1.2.0.1   ggrepel_0.9.2      crayon_1.5.2      
 [76] lattice_0.20-44    cowplot_1.1.1      splines_4.1.0     
 [79] hms_1.1.2          knitr_1.33         pillar_1.8.1      
 [82] softImpute_1.4-1   reshape2_1.4.4     glue_1.6.2        
 [85] evaluate_0.14      trust_0.1-8        data.table_1.14.6 
 [88] RcppParallel_5.1.5 nloptr_1.2.2.2     vctrs_0.5.1       
 [91] httpuv_1.6.1       MatrixModels_0.5-1 gtable_0.3.1      
 [94] purrr_0.3.5        ebnm_1.0-11        tidyr_1.2.1       
 [97] assertthat_0.2.1   ashr_2.2-54        xfun_0.24         
[100] Rfast_2.0.6        NNLM_0.4.4         coda_0.19-4       
[103] later_1.3.0        survival_3.2-11    viridisLite_0.4.1 
[106] glmpca_0.2.0       truncnorm_1.0-8    tibble_3.1.8      
[109] ellipsis_0.3.2