Last updated: 2023-11-10

Checks: 7 0

Knit directory: misc/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(1) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 77bf15c. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.RData
    Ignored:    analysis/.Rhistory
    Ignored:    analysis/ALStruct_cache/
    Ignored:    data/.Rhistory
    Ignored:    data/methylation-data-for-matthew.rds
    Ignored:    data/pbmc/

Untracked files:
    Untracked:  .dropbox
    Untracked:  Icon
    Untracked:  analysis/GHstan.Rmd
    Untracked:  analysis/GTEX-cogaps.Rmd
    Untracked:  analysis/PACS.Rmd
    Untracked:  analysis/Rplot.png
    Untracked:  analysis/SPCAvRP.rmd
    Untracked:  analysis/admm_02.Rmd
    Untracked:  analysis/admm_03.Rmd
    Untracked:  analysis/cholesky.Rmd
    Untracked:  analysis/compare-transformed-models.Rmd
    Untracked:  analysis/cormotif.Rmd
    Untracked:  analysis/cp_ash.Rmd
    Untracked:  analysis/eQTL.perm.rand.pdf
    Untracked:  analysis/eb_prepilot.Rmd
    Untracked:  analysis/eb_var.Rmd
    Untracked:  analysis/ebpmf1.Rmd
    Untracked:  analysis/ebpmf_sla_text.Rmd
    Untracked:  analysis/ebspca_sims.Rmd
    Untracked:  analysis/explore_psvd.Rmd
    Untracked:  analysis/fa_check_identify.Rmd
    Untracked:  analysis/fa_iterative.Rmd
    Untracked:  analysis/flash_test_tree.Rmd
    Untracked:  analysis/flash_tree.Rmd
    Untracked:  analysis/flashier_newgroups.Rmd
    Untracked:  analysis/greedy_ebpmf_exploration_00.Rmd
    Untracked:  analysis/ieQTL.perm.rand.pdf
    Untracked:  analysis/lasso_em_03.Rmd
    Untracked:  analysis/m6amash.Rmd
    Untracked:  analysis/mash_bhat_z.Rmd
    Untracked:  analysis/mash_ieqtl_permutations.Rmd
    Untracked:  analysis/methylation_example.Rmd
    Untracked:  analysis/mixsqp.Rmd
    Untracked:  analysis/mr.ash_lasso_init.Rmd
    Untracked:  analysis/mr.mash.test.Rmd
    Untracked:  analysis/mr_ash_modular.Rmd
    Untracked:  analysis/mr_ash_parameterization.Rmd
    Untracked:  analysis/mr_ash_ridge.Rmd
    Untracked:  analysis/mv_gaussian_message_passing.Rmd
    Untracked:  analysis/nejm.Rmd
    Untracked:  analysis/nmf_bg.Rmd
    Untracked:  analysis/normal_conditional_on_r2.Rmd
    Untracked:  analysis/normalize.Rmd
    Untracked:  analysis/pbmc.Rmd
    Untracked:  analysis/pca_binary_weighted.Rmd
    Untracked:  analysis/pca_l1.Rmd
    Untracked:  analysis/poisson_nmf_approx.Rmd
    Untracked:  analysis/poisson_shrink.Rmd
    Untracked:  analysis/poisson_transform.Rmd
    Untracked:  analysis/pseudodata.Rmd
    Untracked:  analysis/qrnotes.txt
    Untracked:  analysis/ridge_iterative_02.Rmd
    Untracked:  analysis/ridge_iterative_splitting.Rmd
    Untracked:  analysis/samps/
    Untracked:  analysis/sc_bimodal.Rmd
    Untracked:  analysis/shrinkage_comparisons_changepoints.Rmd
    Untracked:  analysis/susie_en.Rmd
    Untracked:  analysis/susie_z_investigate.Rmd
    Untracked:  analysis/svd-timing.Rmd
    Untracked:  analysis/temp.RDS
    Untracked:  analysis/temp.Rmd
    Untracked:  analysis/test-figure/
    Untracked:  analysis/test.Rmd
    Untracked:  analysis/test.Rpres
    Untracked:  analysis/test.md
    Untracked:  analysis/test_qr.R
    Untracked:  analysis/test_sparse.Rmd
    Untracked:  analysis/tree_dist_top_eigenvector.Rmd
    Untracked:  analysis/z.txt
    Untracked:  code/multivariate_testfuncs.R
    Untracked:  code/rqb.hacked.R
    Untracked:  data/4matthew/
    Untracked:  data/4matthew2/
    Untracked:  data/E-MTAB-2805.processed.1/
    Untracked:  data/ENSG00000156738.Sim_Y2.RDS
    Untracked:  data/GDS5363_full.soft.gz
    Untracked:  data/GSE41265_allGenesTPM.txt
    Untracked:  data/Muscle_Skeletal.ACTN3.pm1Mb.RDS
    Untracked:  data/Thyroid.FMO2.pm1Mb.RDS
    Untracked:  data/bmass.HaemgenRBC2016.MAF01.Vs2.MergedDataSources.200kRanSubset.ChrBPMAFMarkerZScores.vs1.txt.gz
    Untracked:  data/bmass.HaemgenRBC2016.Vs2.NewSNPs.ZScores.hclust.vs1.txt
    Untracked:  data/bmass.HaemgenRBC2016.Vs2.PreviousSNPs.ZScores.hclust.vs1.txt
    Untracked:  data/eb_prepilot/
    Untracked:  data/finemap_data/fmo2.sim/b.txt
    Untracked:  data/finemap_data/fmo2.sim/dap_out.txt
    Untracked:  data/finemap_data/fmo2.sim/dap_out2.txt
    Untracked:  data/finemap_data/fmo2.sim/dap_out2_snp.txt
    Untracked:  data/finemap_data/fmo2.sim/dap_out_snp.txt
    Untracked:  data/finemap_data/fmo2.sim/data
    Untracked:  data/finemap_data/fmo2.sim/fmo2.sim.config
    Untracked:  data/finemap_data/fmo2.sim/fmo2.sim.k
    Untracked:  data/finemap_data/fmo2.sim/fmo2.sim.k4.config
    Untracked:  data/finemap_data/fmo2.sim/fmo2.sim.k4.snp
    Untracked:  data/finemap_data/fmo2.sim/fmo2.sim.ld
    Untracked:  data/finemap_data/fmo2.sim/fmo2.sim.snp
    Untracked:  data/finemap_data/fmo2.sim/fmo2.sim.z
    Untracked:  data/finemap_data/fmo2.sim/pos.txt
    Untracked:  data/logm.csv
    Untracked:  data/m.cd.RDS
    Untracked:  data/m.cdu.old.RDS
    Untracked:  data/m.new.cd.RDS
    Untracked:  data/m.old.cd.RDS
    Untracked:  data/mainbib.bib.old
    Untracked:  data/mat.csv
    Untracked:  data/mat.txt
    Untracked:  data/mat_new.csv
    Untracked:  data/matrix_lik.rds
    Untracked:  data/paintor_data/
    Untracked:  data/running_data_chris.csv
    Untracked:  data/running_data_matthew.csv
    Untracked:  data/temp.txt
    Untracked:  data/y.txt
    Untracked:  data/y_f.txt
    Untracked:  data/zscore_jointLCLs_m6AQTLs_susie_eQTLpruned.rds
    Untracked:  data/zscore_jointLCLs_random.rds
    Untracked:  explore_udi.R
    Untracked:  output/fit.k10.rds
    Untracked:  output/fit.nn.rds
    Untracked:  output/fit.nn.s.001.rds
    Untracked:  output/fit.nn.s.01.rds
    Untracked:  output/fit.nn.s.1.rds
    Untracked:  output/fit.nn.s.10.rds
    Untracked:  output/fit.varbvs.RDS
    Untracked:  output/glmnet.fit.RDS
    Untracked:  output/test.bv.txt
    Untracked:  output/test.gamma.txt
    Untracked:  output/test.hyp.txt
    Untracked:  output/test.log.txt
    Untracked:  output/test.param.txt
    Untracked:  output/test2.bv.txt
    Untracked:  output/test2.gamma.txt
    Untracked:  output/test2.hyp.txt
    Untracked:  output/test2.log.txt
    Untracked:  output/test2.param.txt
    Untracked:  output/test3.bv.txt
    Untracked:  output/test3.gamma.txt
    Untracked:  output/test3.hyp.txt
    Untracked:  output/test3.log.txt
    Untracked:  output/test3.param.txt
    Untracked:  output/test4.bv.txt
    Untracked:  output/test4.gamma.txt
    Untracked:  output/test4.hyp.txt
    Untracked:  output/test4.log.txt
    Untracked:  output/test4.param.txt
    Untracked:  output/test5.bv.txt
    Untracked:  output/test5.gamma.txt
    Untracked:  output/test5.hyp.txt
    Untracked:  output/test5.log.txt
    Untracked:  output/test5.param.txt

Unstaged changes:
    Modified:   .gitignore
    Modified:   analysis/flashier_log1p.Rmd
    Modified:   analysis/flashier_sla_text.Rmd
    Modified:   analysis/mr_ash_pen.Rmd
    Modified:   analysis/susie_flash.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/flashier_nmf_shifted_prior.Rmd) and HTML (docs/flashier_nmf_shifted_prior.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 77bf15c Matthew Stephens 2023-11-10 workflowr::wflow_publish("flashier_nmf_shifted_prior.Rmd")

Introduction

I wanted to try out the idea of using a shifted prior when doing NMF. The idea is that when greedily adding factors you can simultaneously “shift” the baseline factor so that it adjusts for the factors you add. However, this simple idea does not work very well in practice in this example, probably due to convergence issues (that may not be so easy to solve).

Read in the data and filter

These steps are following ones in other files. I copy and pasted so there is more code here than I actually need….

library(Matrix)
library(readr)
library(tm)
Loading required package: NLP
library(fastTopics)
library(flashier)
Loading required package: ebnm
Loading required package: magrittr
Loading required package: ggplot2

Attaching package: 'ggplot2'
The following object is masked from 'package:NLP':

    annotate
library(ebpmf)
library(RcppML)
RcppML v0.5.5 using 'options(RcppML.threads = 0)' (all available threads), 'options(RcppML.verbose = FALSE)'
sla <- read_csv("../../gsmash/data/SLA/SCC2016/Data/paperList.txt")
Rows: 3248 Columns: 5
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (3): DOI, title, abstract
dbl (2): year, citCounts

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
sla <- sla[!is.na(sla$abstract),]
sla$docnum = 1:nrow(sla)
datax = readRDS('../../gsmash/data/sla_full.rds')
dim(datax$data)
[1]  3207 10104
sum(datax$data==0)/prod(dim(datax$data))
[1] 0.9948157
datax$data = Matrix(datax$data,sparse = TRUE)

filtering

doc_to_use = order(rowSums(datax$data),decreasing = T)[1:round(nrow(datax$data)*0.6)]
mat = datax$data[doc_to_use,]
sla = sla[doc_to_use,]
samples = datax$samples
samples = lapply(samples, function(z){z[doc_to_use]})

Filter out words that appear in less than 5 documents. Note: if you don’t do this you can still get real factors that capture very rare words co-occuring. Eg two authors that are cited together. If you are interested in those factors, no need to filter…

word_to_use = which(colSums(mat>0)>4)
mat = mat[,word_to_use]
mat = Matrix(mat,sparse=TRUE)
lmat = Matrix(log(mat+1),sparse=TRUE)

docsize = rowSums(mat)
s = docsize/mean(docsize)
lmat_s_10 = Matrix(log(0.1*mat/s+1),sparse=TRUE)
lmat_s_1 = Matrix(log(mat/s+1),sparse=TRUE)
lmat_s_01 = Matrix(log(10*mat/s+1),sparse=TRUE)
lmat_s_001 = Matrix(log(100*mat/s+1),sparse=TRUE)

Compute minimum variances/standard deviations.

mhat = 4/nrow(lmat)
xx = rpois(1e7,mhat) # random poisson
S10 = sd(log(0.1*xx+1))
S1 = sd(log(xx+1)) # sd of log(X+1)
S01 = sd(log(10*xx+1)) # sd if log(10X+1)
S001 = sd(log(100*xx+1)) # sd if log(10X+1)
print(c(S10,S1,S01,S001))
[1] 0.004339581 0.031536221 0.109033434 0.209811829

Shifted point exponential

Define a function that estimates the mode instead of fixing it to 0.

ebnm_shift_point_exponential = function(x,s,g_init,fix_g,output){ebnm_point_exponential(x,s,g_init=g_init, fix_g = fix_g, output=output, mode="estimate")}

The problems comes up on the second factor so I fit 2 factors.

set.seed(1)
fit.1 = flash(lmat_s_1,ebnm_fn = ebnm_shift_point_exponential, S=S1, greedy_Kmax = 2)
Adding factor 1 to flash object...
Adding factor 2 to flash object...
Wrapping up...
Warning in ebnm_workhorse(x = x, s = s, mode = mode, scale = scale, g_init =
g_init, : Since they're not well defined for nonzero modes, local false sign
rates won't be returned.

Warning in ebnm_workhorse(x = x, s = s, mode = mode, scale = scale, g_init =
g_init, : Since they're not well defined for nonzero modes, local false sign
rates won't be returned.

Warning in ebnm_workhorse(x = x, s = s, mode = mode, scale = scale, g_init =
g_init, : Since they're not well defined for nonzero modes, local false sign
rates won't be returned.

Warning in ebnm_workhorse(x = x, s = s, mode = mode, scale = scale, g_init =
g_init, : Since they're not well defined for nonzero modes, local false sign
rates won't be returned.
Done.
Nullchecking 2 factors...
Done.

Here we see that the L and F are non-sparse and far from non-negative. The fitted gs are shifted exponentials (essentially no point mass). Possibly flash is initializing using an unconstrained fit, so essentially PCA. Maybe part of a solution could be to initialize to non-negative?

plot(fit.1$L_pm[,2])

plot(fit.1$F_pm[,2])

fit.1$F_ghat[2]
[[1]]
$pi
[1] 6.072199e-18 1.000000e+00

$shape
[1] 1 1

$scale
[1]   0.0000 144.1321

$shift
[1] -144.129 -144.129

attr(,"class")
[1] "gammamix"
attr(,"row.names")
[1] 1 2
fit.1$L_ghat[2]
[[1]]
$pi
[1] 4.422449e-07 9.999996e-01

$shape
[1] 1 1

$scale
[1] 0.00000000 0.00727064

$shift
[1] -0.006962347 -0.006962347

attr(,"class")
[1] "gammamix"
attr(,"row.names")
[1] 1 2

Here I try initializing using point exponential and then relaxing.

fit.nn = flash(lmat_s_1,ebnm_fn = ebnm_point_exponential, S=S1, greedy_Kmax = 2)
Adding factor 1 to flash object...
Adding factor 2 to flash object...
Wrapping up...
Done.
Nullchecking 2 factors...
Done.
fit.2 = flash_init(lmat_s_1, S=S1)
fit.2 = flash_factors_init(fit.2, fit.nn, ebnm_fn = ebnm_shift_point_exponential)
fit.2 = flash_backfit(fit.2)
Backfitting 2 factors (tolerance: 6.23e-02)...
  Difference between iterations is within 1.0e+03...
  Difference between iterations is within 1.0e+02...
  Difference between iterations is within 1.0e+01...
  Difference between iterations is within 1.0e+00...
  Difference between iterations is within 1.0e-01...
Wrapping up...
Warning in ebnm_workhorse(x = x, s = s, mode = mode, scale = scale, g_init =
g_init, : Since they're not well defined for nonzero modes, local false sign
rates won't be returned.

Warning in ebnm_workhorse(x = x, s = s, mode = mode, scale = scale, g_init =
g_init, : Since they're not well defined for nonzero modes, local false sign
rates won't be returned.

Warning in ebnm_workhorse(x = x, s = s, mode = mode, scale = scale, g_init =
g_init, : Since they're not well defined for nonzero modes, local false sign
rates won't be returned.

Warning in ebnm_workhorse(x = x, s = s, mode = mode, scale = scale, g_init =
g_init, : Since they're not well defined for nonzero modes, local false sign
rates won't be returned.
Done.

We can see the original non-negative fit produces very sparse factors:

plot(fit.nn$L_pm[,2])

plot(fit.nn$F_pm[,2])

But the refit produces something much less sparse, again with no point mass at 0.

plot(fit.2$L_pm[,2])

plot(fit.2$F_pm[,2])

fit.2$L_ghat[2]
[[1]]
$pi
[1] 1.578854e-05 9.999842e-01

$shape
[1] 1 1

$scale
[1] 0.0000000 0.1906966

$shift
[1] -0.07448485 -0.07448485

attr(,"class")
[1] "gammamix"
attr(,"row.names")
[1] 1 2
fit.2$F_ghat[2]
[[1]]
$pi
[1] 4.148026e-15 1.000000e+00

$shape
[1] 1 1

$scale
[1] 0.0000000 0.0554266

$shift
[1] -0.01173853 -0.01173853

attr(,"class")
[1] "gammamix"
attr(,"row.names")
[1] 1 2

I thought this might still be a convergence issue, but it seems that the elbo is better for the relaxed fit.

fit.2$elbo - fit.nn$elbo
[1] 12080.06

Here is a direct comparison of the two fits; quite a big difference.

plot(fit.2$L_pm[,1],fit.nn$L_pm[,1])

plot(fit.2$L_pm[,2],fit.nn$L_pm[,2])

plot(fit.2$F_pm[,1],fit.nn$F_pm[,1])

plot(fit.2$F_pm[,2],fit.nn$F_pm[,2])


sessionInfo()
R version 4.2.1 (2022-06-23)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur ... 10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] RcppML_0.5.6       ebpmf_2.3.2        flashier_1.0.0     ggplot2_3.4.3     
 [5] magrittr_2.0.3     ebnm_1.0-55        fastTopics_0.6-158 tm_0.7-11         
 [9] NLP_0.2-1          readr_2.1.4        Matrix_1.5-3      

loaded via a namespace (and not attached):
  [1] Rtsne_0.16         ebpm_0.0.1.3       colorspace_2.1-0  
  [4] smashr_1.2-9       ellipsis_0.3.2     rprojroot_2.0.3   
  [7] fs_1.6.3           rstudioapi_0.14    MatrixModels_0.5-1
 [10] ggrepel_0.9.3      bit64_4.0.5        fansi_1.0.5       
 [13] mvtnorm_1.2-3      xml2_1.3.3         splines_4.2.1     
 [16] cachem_1.0.7       knitr_1.42         jsonlite_1.8.7    
 [19] workflowr_1.7.0    nloptr_2.0.3       mcmc_0.9-7        
 [22] ashr_2.2-63        smashrgen_1.2.5    uwot_0.1.14       
 [25] compiler_4.2.1     httr_1.4.5         RcppZiggurat_0.1.6
 [28] fastmap_1.1.1      lazyeval_0.2.2     cli_3.6.1         
 [31] later_1.3.0        htmltools_0.5.4    quantreg_5.94     
 [34] prettyunits_1.2.0  tools_4.2.1        coda_0.19-4       
 [37] gtable_0.3.4       glue_1.6.2         dplyr_1.1.3       
 [40] Rcpp_1.0.11        softImpute_1.4-1   slam_0.1-50       
 [43] jquerylib_0.1.4    vctrs_0.6.4        wavethresh_4.7.2  
 [46] xfun_0.37          stringr_1.5.0      trust_0.1-8       
 [49] lifecycle_1.0.3    irlba_2.3.5.1      MASS_7.3-58.2     
 [52] scales_1.2.1       vroom_1.6.1        hms_1.1.2         
 [55] promises_1.2.0.1   parallel_4.2.1     SparseM_1.81      
 [58] yaml_2.3.7         pbapply_1.7-0      sass_0.4.5        
 [61] stringi_1.7.12     SQUAREM_2021.1     highr_0.10        
 [64] deconvolveR_1.2-1  caTools_1.18.2     truncnorm_1.0-9   
 [67] horseshoe_0.2.0    rlang_1.1.1        pkgconfig_2.0.3   
 [70] matrixStats_1.0.0  bitops_1.0-7       evaluate_0.22     
 [73] lattice_0.20-45    invgamma_1.1       purrr_1.0.2       
 [76] htmlwidgets_1.6.1  bit_4.0.5          Rfast_2.0.8       
 [79] cowplot_1.1.1      tidyselect_1.2.0   R6_2.5.1          
 [82] generics_0.1.3     pillar_1.9.0       whisker_0.4.1     
 [85] withr_2.5.1        survival_3.5-3     mixsqp_0.3-48     
 [88] tibble_3.2.1       crayon_1.5.2       utf8_1.2.3        
 [91] plotly_4.10.2      tzdb_0.3.0         rmarkdown_2.20    
 [94] progress_1.2.2     grid_4.2.1         data.table_1.14.8 
 [97] git2r_0.31.0       digest_0.6.33      vebpm_0.4.9       
[100] tidyr_1.3.0        httpuv_1.6.9       MCMCpack_1.6-3    
[103] RcppParallel_5.1.7 munsell_0.5.0      viridisLite_0.4.2 
[106] bslib_0.4.2        quadprog_1.5-8