Last updated: 2024-05-01
Checks: 7 0
Knit directory: misc/analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(1)
was run prior to running the
code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 67a1ff6. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/.RData
Ignored: analysis/.Rhistory
Ignored: analysis/ALStruct_cache/
Ignored: data/.Rhistory
Ignored: data/methylation-data-for-matthew.rds
Ignored: data/pbmc/
Ignored: data/pbmc_purified.RData
Untracked files:
Untracked: .dropbox
Untracked: Icon
Untracked: analysis/GHstan.Rmd
Untracked: analysis/GTEX-cogaps.Rmd
Untracked: analysis/PACS.Rmd
Untracked: analysis/Rplot.png
Untracked: analysis/SPCAvRP.rmd
Untracked: analysis/abf_comparisons.Rmd
Untracked: analysis/admm_02.Rmd
Untracked: analysis/admm_03.Rmd
Untracked: analysis/cache/
Untracked: analysis/cholesky.Rmd
Untracked: analysis/compare-transformed-models.Rmd
Untracked: analysis/cormotif.Rmd
Untracked: analysis/cp_ash.Rmd
Untracked: analysis/eQTL.perm.rand.pdf
Untracked: analysis/eb_prepilot.Rmd
Untracked: analysis/eb_var.Rmd
Untracked: analysis/ebpmf1.Rmd
Untracked: analysis/ebpmf_sla_text.Rmd
Untracked: analysis/ebspca_sims.Rmd
Untracked: analysis/explore_psvd.Rmd
Untracked: analysis/fa_check_identify.Rmd
Untracked: analysis/fa_iterative.Rmd
Untracked: analysis/flash_test_tree.Rmd
Untracked: analysis/flash_tree.Rmd
Untracked: analysis/flashier_newgroups.Rmd
Untracked: analysis/flashier_nmf_triples.Rmd
Untracked: analysis/flashier_pbmc.Rmd
Untracked: analysis/flashier_snn_shifted_prior.Rmd
Untracked: analysis/greedy_ebpmf_exploration_00.Rmd
Untracked: analysis/ieQTL.perm.rand.pdf
Untracked: analysis/lasso_em_03.Rmd
Untracked: analysis/m6amash.Rmd
Untracked: analysis/mash_bhat_z.Rmd
Untracked: analysis/mash_ieqtl_permutations.Rmd
Untracked: analysis/methylation_example.Rmd
Untracked: analysis/mixsqp.Rmd
Untracked: analysis/mr.ash_lasso_init.Rmd
Untracked: analysis/mr.mash.test.Rmd
Untracked: analysis/mr_ash_modular.Rmd
Untracked: analysis/mr_ash_parameterization.Rmd
Untracked: analysis/mr_ash_ridge.Rmd
Untracked: analysis/mv_gaussian_message_passing.Rmd
Untracked: analysis/nejm.Rmd
Untracked: analysis/nmf_bg.Rmd
Untracked: analysis/normal_conditional_on_r2.Rmd
Untracked: analysis/normalize.Rmd
Untracked: analysis/pbmc.Rmd
Untracked: analysis/pca_binary_weighted.Rmd
Untracked: analysis/pca_l1.Rmd
Untracked: analysis/poisson_nmf_approx.Rmd
Untracked: analysis/poisson_shrink.Rmd
Untracked: analysis/poisson_transform.Rmd
Untracked: analysis/qrnotes.txt
Untracked: analysis/ridge_iterative_02.Rmd
Untracked: analysis/ridge_iterative_splitting.Rmd
Untracked: analysis/samps/
Untracked: analysis/sc_bimodal.Rmd
Untracked: analysis/shrinkage_comparisons_changepoints.Rmd
Untracked: analysis/susie_cov.Rmd
Untracked: analysis/susie_en.Rmd
Untracked: analysis/susie_z_investigate.Rmd
Untracked: analysis/svd-timing.Rmd
Untracked: analysis/temp.RDS
Untracked: analysis/temp.Rmd
Untracked: analysis/test-figure/
Untracked: analysis/test.Rmd
Untracked: analysis/test.Rpres
Untracked: analysis/test.md
Untracked: analysis/test_qr.R
Untracked: analysis/test_sparse.Rmd
Untracked: analysis/tree_dist_top_eigenvector.Rmd
Untracked: analysis/z.txt
Untracked: code/multivariate_testfuncs.R
Untracked: code/rqb.hacked.R
Untracked: data/4matthew/
Untracked: data/4matthew2/
Untracked: data/E-MTAB-2805.processed.1/
Untracked: data/ENSG00000156738.Sim_Y2.RDS
Untracked: data/GDS5363_full.soft.gz
Untracked: data/GSE41265_allGenesTPM.txt
Untracked: data/Muscle_Skeletal.ACTN3.pm1Mb.RDS
Untracked: data/P.rds
Untracked: data/Thyroid.FMO2.pm1Mb.RDS
Untracked: data/bmass.HaemgenRBC2016.MAF01.Vs2.MergedDataSources.200kRanSubset.ChrBPMAFMarkerZScores.vs1.txt.gz
Untracked: data/bmass.HaemgenRBC2016.Vs2.NewSNPs.ZScores.hclust.vs1.txt
Untracked: data/bmass.HaemgenRBC2016.Vs2.PreviousSNPs.ZScores.hclust.vs1.txt
Untracked: data/eb_prepilot/
Untracked: data/finemap_data/fmo2.sim/b.txt
Untracked: data/finemap_data/fmo2.sim/dap_out.txt
Untracked: data/finemap_data/fmo2.sim/dap_out2.txt
Untracked: data/finemap_data/fmo2.sim/dap_out2_snp.txt
Untracked: data/finemap_data/fmo2.sim/dap_out_snp.txt
Untracked: data/finemap_data/fmo2.sim/data
Untracked: data/finemap_data/fmo2.sim/fmo2.sim.config
Untracked: data/finemap_data/fmo2.sim/fmo2.sim.k
Untracked: data/finemap_data/fmo2.sim/fmo2.sim.k4.config
Untracked: data/finemap_data/fmo2.sim/fmo2.sim.k4.snp
Untracked: data/finemap_data/fmo2.sim/fmo2.sim.ld
Untracked: data/finemap_data/fmo2.sim/fmo2.sim.snp
Untracked: data/finemap_data/fmo2.sim/fmo2.sim.z
Untracked: data/finemap_data/fmo2.sim/pos.txt
Untracked: data/logm.csv
Untracked: data/m.cd.RDS
Untracked: data/m.cdu.old.RDS
Untracked: data/m.new.cd.RDS
Untracked: data/m.old.cd.RDS
Untracked: data/mainbib.bib.old
Untracked: data/mat.csv
Untracked: data/mat.txt
Untracked: data/mat_new.csv
Untracked: data/matrix_lik.rds
Untracked: data/paintor_data/
Untracked: data/running_data_chris.csv
Untracked: data/running_data_matthew.csv
Untracked: data/temp.txt
Untracked: data/y.txt
Untracked: data/y_f.txt
Untracked: data/zscore_jointLCLs_m6AQTLs_susie_eQTLpruned.rds
Untracked: data/zscore_jointLCLs_random.rds
Untracked: explore_udi.R
Untracked: output/fit.k10.rds
Untracked: output/fit.nn.pbmc.purified.rds
Untracked: output/fit.nn.rds
Untracked: output/fit.nn.s.001.rds
Untracked: output/fit.nn.s.01.rds
Untracked: output/fit.nn.s.1.rds
Untracked: output/fit.nn.s.10.rds
Untracked: output/fit.snn.s.001.rds
Untracked: output/fit.snn.s.01.nninit.rds
Untracked: output/fit.snn.s.01.rds
Untracked: output/fit.varbvs.RDS
Untracked: output/fit2.nn.pbmc.purified.rds
Untracked: output/glmnet.fit.RDS
Untracked: output/snn07.txt
Untracked: output/snn34.txt
Untracked: output/test.bv.txt
Untracked: output/test.gamma.txt
Untracked: output/test.hyp.txt
Untracked: output/test.log.txt
Untracked: output/test.param.txt
Untracked: output/test2.bv.txt
Untracked: output/test2.gamma.txt
Untracked: output/test2.hyp.txt
Untracked: output/test2.log.txt
Untracked: output/test2.param.txt
Untracked: output/test3.bv.txt
Untracked: output/test3.gamma.txt
Untracked: output/test3.hyp.txt
Untracked: output/test3.log.txt
Untracked: output/test3.param.txt
Untracked: output/test4.bv.txt
Untracked: output/test4.gamma.txt
Untracked: output/test4.hyp.txt
Untracked: output/test4.log.txt
Untracked: output/test4.param.txt
Untracked: output/test5.bv.txt
Untracked: output/test5.gamma.txt
Untracked: output/test5.hyp.txt
Untracked: output/test5.log.txt
Untracked: output/test5.param.txt
Unstaged changes:
Modified: .gitignore
Modified: analysis/flashier_log1p.Rmd
Modified: analysis/flashier_sla_text.Rmd
Modified: analysis/mr_ash_pen.Rmd
Modified: analysis/susie_flash.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown (analysis/logistic_z_scores.Rmd
) and
HTML (docs/logistic_z_scores.html
) files. If you’ve
configured a remote Git repository (see ?wflow_git_remote
),
click on the hyperlinks in the table below to view the files as they
were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 67a1ff6 | Matthew Stephens | 2024-05-01 | workflowr::wflow_publish("logistic_z_scores.Rmd") |
library(ggplot2)
library(dplyr)
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
filter, lag
The following objects are masked from 'package:base':
intersect, setdiff, setequal, union
set.seed(1)
I want to document an unexpected phenomena I saw when computing z score for logistic regression: when the effect size increases the z scores eventually start decreasing.
First I set up some simulation code for simple logistic regression. We have \(x_i \sim N(0,1)\) and \(y_i \sim Bernoulli(\frac{e^{x_i b}}{1+e^{x_i b}})\). I set up this code to do some comparisons between linear and logistic regression, so it returns more things than we need here.
#' simulate data and return dataframe of results from linear and logistic regression
#' @param n sample size
#' @param b effect size
#' @param nsim number of simulations
simdata = function(n,b,binarize_x=FALSE){
x = rnorm(n)
if(binarize_x){
x = (x > 0) - ( x < 0 )
}
y = rbinom(n, 1, exp(x*b)/(1+exp(x*b)))
coeff.log = summary(glm(y ~ x, family=binomial))$coef
coeff.lin = summary(glm(y ~ x, family=gaussian))$coef
z.log = coeff.log[2,3] # z score
bhat.log = coeff.log[2,1] # estimated effect size
s.log = coeff.log[2,2] # standard error
z.lin = coeff.lin[2,3] # z score
s.lin = coeff.lin[2,2]
bhat.lin = coeff.lin[2,1]
# these are the normal log-likelihood ratios
nllr.lin = dnorm(bhat.lin,mean = bhat.lin, sd = s.lin, log=TRUE)-dnorm(bhat.lin, mean = 0, sd = s.lin,log=TRUE)
nllr.log = dnorm(bhat.log,mean = bhat.log, sd = s.log, log=TRUE)-dnorm(bhat.log, mean = 0, sd = s.log,log=TRUE)
# these are the logistic/binomial log-likelihood ratios
llr.lin = sum(dbinom(y, size=1, prob=1/(1+exp(-x*bhat.lin)), log=TRUE) - dbinom(y, size=1, prob=0.5, log=TRUE))
llr.log = sum(dbinom(y, size=1, prob=1/(1+exp(-x*bhat.log)), log=TRUE) - dbinom(y, size=1, prob=0.5, log=TRUE))
return(data.frame(n=n, b=b, z.log=z.log, s.log=s.log, bhat.log=bhat.log, z.lin=z.lin, s.lin=s.lin, bhat.lin=bhat.lin, nllr.lin = nllr.lin, nllr.log = nllr.log, llr.lin = llr.lin, llr.log = llr.log))
}
dsimdata = function(design){
design %>% rowwise() %>% mutate(simdata(n,b))
}
I simulate data with two different sample sizes and effect sizes that are \(b \sim N(0,sd=2)\). The z scores increase with b, but then start to decrease.
sim1 = dsimdata(data.frame(n=1000,b=rnorm(50,0,2)))
sim2 = dsimdata(data.frame(n=10000,b=rnorm(50,0,2)))
sim3 = dsimdata(data.frame(n=100000,b=rnorm(50,0,2)))
ggplot(rbind(sim1,sim2,sim3),
mapping = aes(b, z.log)) +
geom_point(mapping = aes(color = b, shape=as.factor(n))) +
ylab("z score (logistic regression)")
I repated this with binary x to see if it changes things. It seems to be the same story.
sim1b = dsimdata(data.frame(n=1000,b=rnorm(50,0,2), binarize_x = TRUE))
sim2b = dsimdata(data.frame(n=10000,b=rnorm(50,0,2), binarize_x = TRUE))
sim3b = dsimdata(data.frame(n=100000,b=rnorm(50,0,2), binarize_x = TRUE))
ggplot(rbind(sim1b,sim2b,sim3b),
mapping = aes(b, z.log)) +
geom_point(mapping = aes(color = b, shape=as.factor(n))) +
ylab("z score (logistic regression)")
Just to emphasize: this phenomena seems not to be related to problems of separation or even small counts, since it occurs even with large n at moderate b.
Here is a single simulation to illustrate that we have large counts in all four groups when n=100k and b=2.5.
n = 100000
b = 2.5
x = rnorm(n)
x = (x>0) - (x<0) # binarize x
y = rbinom(n, 1, exp(x*b)/(1+exp(x*b)))
table(x,y)
y
x 0 1
-1 46105 3740
1 3803 46352
sessionInfo()
R version 4.2.1 (2022-06-23)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur ... 10.16
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] dplyr_1.1.4 ggplot2_3.4.4
loaded via a namespace (and not attached):
[1] Rcpp_1.0.12 highr_0.10 pillar_1.9.0 compiler_4.2.1
[5] bslib_0.6.1 later_1.3.2 jquerylib_0.1.4 git2r_0.33.0
[9] workflowr_1.7.1 tools_4.2.1 digest_0.6.33 gtable_0.3.4
[13] jsonlite_1.8.8 evaluate_0.23 lifecycle_1.0.4 tibble_3.2.1
[17] pkgconfig_2.0.3 rlang_1.1.2 cli_3.6.2 rstudioapi_0.15.0
[21] yaml_2.3.8 xfun_0.41 fastmap_1.1.1 withr_3.0.0
[25] stringr_1.5.1 knitr_1.45 generics_0.1.3 fs_1.6.3
[29] vctrs_0.6.5 sass_0.4.8 tidyselect_1.2.0 rprojroot_2.0.4
[33] grid_4.2.1 glue_1.6.2 R6_2.5.1 fansi_1.0.6
[37] rmarkdown_2.25 farver_2.1.1 magrittr_2.0.3 whisker_0.4.1
[41] scales_1.3.0 promises_1.2.1 htmltools_0.5.7 colorspace_2.1-0
[45] httpuv_1.6.13 labeling_0.4.3 utf8_1.2.4 stringi_1.8.3
[49] munsell_0.5.0 cachem_1.0.8