Last updated: 2023-10-13

Checks: 7 0

Knit directory: misc/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(1) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 08156f9. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.RData
    Ignored:    analysis/.Rhistory
    Ignored:    analysis/ALStruct_cache/
    Ignored:    data/.Rhistory
    Ignored:    data/methylation-data-for-matthew.rds
    Ignored:    data/pbmc/

Untracked files:
    Untracked:  .dropbox
    Untracked:  Icon
    Untracked:  analysis/GHstan.Rmd
    Untracked:  analysis/GTEX-cogaps.Rmd
    Untracked:  analysis/PACS.Rmd
    Untracked:  analysis/Rplot.png
    Untracked:  analysis/SPCAvRP.rmd
    Untracked:  analysis/admm_02.Rmd
    Untracked:  analysis/admm_03.Rmd
    Untracked:  analysis/cholesky.Rmd
    Untracked:  analysis/compare-transformed-models.Rmd
    Untracked:  analysis/cormotif.Rmd
    Untracked:  analysis/cp_ash.Rmd
    Untracked:  analysis/eQTL.perm.rand.pdf
    Untracked:  analysis/eb_prepilot.Rmd
    Untracked:  analysis/eb_var.Rmd
    Untracked:  analysis/ebpmf1.Rmd
    Untracked:  analysis/ebspca_sims.Rmd
    Untracked:  analysis/fa_check_identify.Rmd
    Untracked:  analysis/fa_iterative.Rmd
    Untracked:  analysis/flash_test_tree.Rmd
    Untracked:  analysis/flash_tree.Rmd
    Untracked:  analysis/ieQTL.perm.rand.pdf
    Untracked:  analysis/lasso_em_03.Rmd
    Untracked:  analysis/m6amash.Rmd
    Untracked:  analysis/mash_bhat_z.Rmd
    Untracked:  analysis/mash_ieqtl_permutations.Rmd
    Untracked:  analysis/methylation_example.Rmd
    Untracked:  analysis/mixsqp.Rmd
    Untracked:  analysis/mr.ash_lasso_init.Rmd
    Untracked:  analysis/mr.mash.test.Rmd
    Untracked:  analysis/mr_ash_modular.Rmd
    Untracked:  analysis/mr_ash_parameterization.Rmd
    Untracked:  analysis/mr_ash_ridge.Rmd
    Untracked:  analysis/mv_gaussian_message_passing.Rmd
    Untracked:  analysis/nejm.Rmd
    Untracked:  analysis/nmf_bg.Rmd
    Untracked:  analysis/normal_conditional_on_r2.Rmd
    Untracked:  analysis/normalize.Rmd
    Untracked:  analysis/pbmc.Rmd
    Untracked:  analysis/pca_binary_weighted.Rmd
    Untracked:  analysis/pca_l1.Rmd
    Untracked:  analysis/poisson_shrink.Rmd
    Untracked:  analysis/poisson_transform.Rmd
    Untracked:  analysis/pseudodata.Rmd
    Untracked:  analysis/qrnotes.txt
    Untracked:  analysis/ridge_iterative_02.Rmd
    Untracked:  analysis/ridge_iterative_splitting.Rmd
    Untracked:  analysis/samps/
    Untracked:  analysis/sc_bimodal.Rmd
    Untracked:  analysis/shrinkage_comparisons_changepoints.Rmd
    Untracked:  analysis/susie_en.Rmd
    Untracked:  analysis/susie_z_investigate.Rmd
    Untracked:  analysis/svd-timing.Rmd
    Untracked:  analysis/temp.RDS
    Untracked:  analysis/temp.Rmd
    Untracked:  analysis/test-figure/
    Untracked:  analysis/test.Rmd
    Untracked:  analysis/test.Rpres
    Untracked:  analysis/test.md
    Untracked:  analysis/test_qr.R
    Untracked:  analysis/test_sparse.Rmd
    Untracked:  analysis/tree_dist_top_eigenvector.Rmd
    Untracked:  analysis/z.txt
    Untracked:  code/multivariate_testfuncs.R
    Untracked:  code/rqb.hacked.R
    Untracked:  data/4matthew/
    Untracked:  data/4matthew2/
    Untracked:  data/E-MTAB-2805.processed.1/
    Untracked:  data/ENSG00000156738.Sim_Y2.RDS
    Untracked:  data/GDS5363_full.soft.gz
    Untracked:  data/GSE41265_allGenesTPM.txt
    Untracked:  data/Muscle_Skeletal.ACTN3.pm1Mb.RDS
    Untracked:  data/Thyroid.FMO2.pm1Mb.RDS
    Untracked:  data/bmass.HaemgenRBC2016.MAF01.Vs2.MergedDataSources.200kRanSubset.ChrBPMAFMarkerZScores.vs1.txt.gz
    Untracked:  data/bmass.HaemgenRBC2016.Vs2.NewSNPs.ZScores.hclust.vs1.txt
    Untracked:  data/bmass.HaemgenRBC2016.Vs2.PreviousSNPs.ZScores.hclust.vs1.txt
    Untracked:  data/eb_prepilot/
    Untracked:  data/finemap_data/fmo2.sim/b.txt
    Untracked:  data/finemap_data/fmo2.sim/dap_out.txt
    Untracked:  data/finemap_data/fmo2.sim/dap_out2.txt
    Untracked:  data/finemap_data/fmo2.sim/dap_out2_snp.txt
    Untracked:  data/finemap_data/fmo2.sim/dap_out_snp.txt
    Untracked:  data/finemap_data/fmo2.sim/data
    Untracked:  data/finemap_data/fmo2.sim/fmo2.sim.config
    Untracked:  data/finemap_data/fmo2.sim/fmo2.sim.k
    Untracked:  data/finemap_data/fmo2.sim/fmo2.sim.k4.config
    Untracked:  data/finemap_data/fmo2.sim/fmo2.sim.k4.snp
    Untracked:  data/finemap_data/fmo2.sim/fmo2.sim.ld
    Untracked:  data/finemap_data/fmo2.sim/fmo2.sim.snp
    Untracked:  data/finemap_data/fmo2.sim/fmo2.sim.z
    Untracked:  data/finemap_data/fmo2.sim/pos.txt
    Untracked:  data/logm.csv
    Untracked:  data/m.cd.RDS
    Untracked:  data/m.cdu.old.RDS
    Untracked:  data/m.new.cd.RDS
    Untracked:  data/m.old.cd.RDS
    Untracked:  data/mainbib.bib.old
    Untracked:  data/mat.csv
    Untracked:  data/mat.txt
    Untracked:  data/mat_new.csv
    Untracked:  data/matrix_lik.rds
    Untracked:  data/paintor_data/
    Untracked:  data/running_data_chris.csv
    Untracked:  data/running_data_matthew.csv
    Untracked:  data/temp.txt
    Untracked:  data/y.txt
    Untracked:  data/y_f.txt
    Untracked:  data/zscore_jointLCLs_m6AQTLs_susie_eQTLpruned.rds
    Untracked:  data/zscore_jointLCLs_random.rds
    Untracked:  explore_udi.R
    Untracked:  output/fit.k10.rds
    Untracked:  output/fit.varbvs.RDS
    Untracked:  output/glmnet.fit.RDS
    Untracked:  output/test.bv.txt
    Untracked:  output/test.gamma.txt
    Untracked:  output/test.hyp.txt
    Untracked:  output/test.log.txt
    Untracked:  output/test.param.txt
    Untracked:  output/test2.bv.txt
    Untracked:  output/test2.gamma.txt
    Untracked:  output/test2.hyp.txt
    Untracked:  output/test2.log.txt
    Untracked:  output/test2.param.txt
    Untracked:  output/test3.bv.txt
    Untracked:  output/test3.gamma.txt
    Untracked:  output/test3.hyp.txt
    Untracked:  output/test3.log.txt
    Untracked:  output/test3.param.txt
    Untracked:  output/test4.bv.txt
    Untracked:  output/test4.gamma.txt
    Untracked:  output/test4.hyp.txt
    Untracked:  output/test4.log.txt
    Untracked:  output/test4.param.txt
    Untracked:  output/test5.bv.txt
    Untracked:  output/test5.gamma.txt
    Untracked:  output/test5.hyp.txt
    Untracked:  output/test5.log.txt
    Untracked:  output/test5.param.txt

Unstaged changes:
    Modified:   .gitignore
    Modified:   analysis/mr_ash_pen.Rmd
    Modified:   analysis/susie_flash.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/sloppy_admm.Rmd) and HTML (docs/sloppy_admm.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 08156f9 Matthew Stephens 2023-10-13 workflowr::wflow_publish("analysis/sloppy_admm.Rmd")

library(ebmr.alpha)
library(ebnm)

Introduction

I wanted to try fitting the following model:

\[Y = Xu + e\]

where \[e \sim N(0,s^2)\] and \[u = b + v\] \[v \sim N(0,s_u^2)\] \[b \sim g()\] where \(g\) is a (potentially-sparse) prior to be estimated by Empirical Bayes.

One motivation here is that \(v\) is a set of “dense” effects, and \(b\) is a set of (potentially) “sparse” effects. If \(g\) is a point mass at 0 then this is ridge regression. If \(s_u =0\) then this is a (potentially) sparse regression model. So this model generalizes sparse regression and ridge regression. (If we set \(g\) as a point-normal prior then this is the BSLMM model of Zhou, Carbonetto and Stephens).

But the real motivation is that I think this model might be easy to fit by using a variational approximation and an “ADMM-like” algorithm.

If we integrate out \(v\) then we can rewrite the prior as: \[u|b \sim N(b, s_u^2)\] and \[b \sim g()\].

If we make the variational approximation \(q(b,u) = q_b(b)q_u(u)\) then the update for \(q_u\) is: \[q_u = \bar{b} + Ridge(y-X\bar{b},X,s_u^2,s^2)\] where \(\bar{b}\) denotes the expectation of \(q_b\) and \(Ridge(y,X,s^2_u,s^2)\) denotes the computation of the posterior for a ridge regression with response \(y\), covariates \(X\), prior variance \(s^2_u\) and error variance \(s^2\).

The update for \(g,q_b\) is \[(g,q_b) = EBNM(\bar{u}, s^2_u)\]

Finally, the update for \(s^2_u\) is \[s^2_u = (1/p)\sum_j [E(b_j^2) + E(u_j^2) - 2\bar{b}_j\bar{u}_j] = (1/p)\sum_j [Var(b_j)+Var(u_j) + (\bar{b}_j-\bar{u}_j)^2].\]

Example data

First I simulate some example data for testing, using a (0th order) trendfiltering example. This is a somewhat tricky example because the columns of the \(X\) matrix are so correlated.

set.seed(100)
n = 100
p = n
X = matrix(0,nrow=n,ncol=n)
for(i in 1:n){
  X[i:n,i] = 1:(n-i+1)
}
btrue = rep(0,n)
btrue[40] = 8
btrue[41] = -8
Y = X %*% btrue + 0.1*rnorm(n)

norm = mean(Y^2) # normalize Y because it makes it easier to compare with glmnet
Y = Y/norm
btrue = btrue/norm
plot(Y)
lines(X %*% btrue)

Ridge regression

To implement these updates I need a function to perform ridge regression. So here I implement and test this function.

Here is code to fit ridge regression with fixed prior and residual variance. It returns the posterior mean (Eb) and the marginal posterior variances (Vb).

ridge = function(y,A,prior_variance,prior_mean=rep(0,ncol(A)),residual_variance=1){
  n = length(y)
  p = ncol(A)
  L = chol(t(A) %*% A + (residual_variance/prior_variance)*diag(p))
  b = backsolve(L, t(A) %*% y + (residual_variance/prior_variance)*prior_mean, transpose=TRUE)
  b = backsolve(L, b)
  #b = chol2inv(L) %*% (t(A) %*% y + (residual_variance/prior_variance)*prior_mean)
  Sigma = residual_variance * chol2inv(L) # posterior variance
  return(list(Eb = b, Vb=diag(Sigma)))
}

Here I check this code gives me the same answer as ebmr (which does empirical Bayes, so estimates prior and residual variance). Looks good.

y.fit.ebr = ebmr(X,Y, maxiter = 200, ebnv_fn = ebnv.pm)
plot(Y)
lines(X %*% btrue)
lines(X %*% y.fit.ebr$mu,col=2)

Emu = y.fit.ebr$mu # posterior mean
Vmu = y.fit.ebr$residual_variance * y.fit.ebr$Sigma_diag # variance 
prior_var = y.fit.ebr$sb2 * y.fit.ebr$residual_variance   # prior variance 
residual_var = y.fit.ebr$residual_variance # residual variance
temp = ridge(Y, X, prior_variance= prior_var, residual_variance = residual_var)
plot(temp$Eb, Emu)
abline(a=0,b=1)

plot(temp$Vb, Vmu)
abline(a=0,b=1)

The algorithm

sloppy_admm = function(X,y,maxiter=100){
  y.fit.ridge = ebmr(X,y, maxiter = 100, ebnv_fn = ebnv.pm) # fit a ridge regression
  n = nrow(X)
  p = ncol(X)
  
  Eb = rep(0,p)
  Vb = rep(0,p)
  Eu = y.fit.ebr$mu # posterior mean
  Vu= 0 #Vu = y.fit.ebr$residual_variance * y.fit.ebr$Sigma_diag # variance 
  #su2 = y.fit.ebr$sb2 * y.fit.ebr$residual_variance   # prior variance 
  s2 = y.fit.ebr$residual_variance # residual variance
  
  for(i in 1:maxiter){
    su2 = mean(Vb + Vu + (Eb-Eu)^2)
    res.ebnm = ebnm::ebnm_ash(Eu,sqrt(su2))
    Eb = res.ebnm$posterior$mean
    Vb = res.ebnm$posterior$sd^2
    
    fit.rr = ridge(y,X,su2,Eb,s2)
    Eu = fit.rr$Eb
    Vu = fit.rr$Vb
  }
  return(list(Eu=Eu,Eu.ridge = y.fit.ebr$mu))
}

Here I compare the sloppy admm fit (red) with ridge(green):

plot(Y)
lines(X %*% btrue)
res = sloppy_admm(X,Y)
lines(X %*% res$Eu ,col=2)
lines(X %*% res$Eu.ridge,col=3)


sessionInfo()
R version 4.2.1 (2022-06-23)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur ... 10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] ebnm_1.0-55      ebmr.alpha_0.2.8

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.11       horseshoe_0.2.0   invgamma_1.1      mvtnorm_1.2-3    
 [5] lattice_0.20-45   rprojroot_2.0.3   digest_0.6.31     utf8_1.2.3       
 [9] truncnorm_1.0-9   R6_2.5.1          evaluate_0.20     ggplot2_3.4.3    
[13] highr_0.10        pillar_1.9.0      rlang_1.1.1       rstudioapi_0.14  
[17] irlba_2.3.5.1     whisker_0.4.1     jquerylib_0.1.4   R.oo_1.25.0      
[21] R.utils_2.12.2    Matrix_1.5-3      rmarkdown_2.20    splines_4.2.1    
[25] stringr_1.5.0     munsell_0.5.0     mixsqp_0.3-48     compiler_4.2.1   
[29] httpuv_1.6.9      xfun_0.37         pkgconfig_2.0.3   SQUAREM_2021.1   
[33] htmltools_0.5.4   tidyselect_1.2.0  tibble_3.2.1      workflowr_1.7.0  
[37] fansi_1.0.4       withr_2.5.0       dplyr_1.1.3       later_1.3.0      
[41] R.methodsS3_1.8.2 grid_4.2.1        jsonlite_1.8.4    gtable_0.3.4     
[45] lifecycle_1.0.3   git2r_0.31.0      magrittr_2.0.3    scales_1.2.1     
[49] cli_3.6.1         stringi_1.7.12    cachem_1.0.7      fs_1.6.1         
[53] promises_1.2.0.1  bslib_0.4.2       generics_0.1.3    vctrs_0.6.3      
[57] trust_0.1-8       tools_4.2.1       glue_1.6.2        fastmap_1.1.1    
[61] yaml_2.3.7        colorspace_2.1-0  ashr_2.2-63       deconvolveR_1.2-1
[65] knitr_1.42        sass_0.4.5