Last updated: 2018-10-23

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(20180414)

    The command set.seed(20180414) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: 21b9bcc

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .DS_Store
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    analysis/.Rhistory
    
    Untracked files:
        Untracked:  analysis/cp_convergence.Rmd
        Untracked:  analysis/cp_init_tf.Rmd
        Untracked:  analysis/null.Rmd
        Untracked:  analysis/pelt.Rmd
        Untracked:  analysis/test.Rmd
        Untracked:  data/geneMatrix.tsv
        Untracked:  data/liter_data_4_summarize_ld_1_lm_less_3.rds
        Untracked:  data/meta.tsv
        Untracked:  docs/figure/cp_convergence.Rmd/
        Untracked:  docs/figure/pelt.Rmd/
        Untracked:  docs/figure/test.Rmd/
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd 21b9bcc stephens999 2018-10-23 workflowr::wflow_publish(“analysis/changepoint.Rmd”)
    html a9642dc stephens999 2018-10-22 Build site.
    Rmd 451b70e stephens999 2018-10-22 workflowr::wflow_publish(“analysis/changepoint.Rmd”)
    html 431c7b3 stephens999 2018-10-22 Build site.
    Rmd 9126e0e stephens999 2018-10-22 workflowr::wflow_publish(“analysis/changepoint.Rmd”)
    html ef836ff stephens999 2018-10-22 Build site.
    Rmd d6932aa stephens999 2018-10-22 workflowr::wflow_publish(“analysis/changepoint.Rmd”)
    html 07cb570 stephens999 2018-10-19 Build site.
    Rmd 744b917 stephens999 2018-10-19 workflowr::wflow_publish(“analysis/changepoint.Rmd”)
    html a45f3cd stephens999 2018-10-18 Build site.
    Rmd 04dec25 stephens999 2018-10-18 workflowr::wflow_publish(“analysis/changepoint.Rmd”)


Introduction

Here we try susie on some example change point problems, and compare with other methods for change point detection in the changepoint package (penalized methods), bcp package (Bayesian MCMC method), genlasso (L1 penalty method), and L0learn (L0 penalty).

First we define some useful functions to run susie and other methods on changepoint problems and plot the CSs.

library("susieR")
library("genlasso")
Loading required package: Matrix
Loading required package: igraph

Attaching package: 'igraph'
The following objects are masked from 'package:stats':

    decompose, spectrum
The following object is masked from 'package:base':

    union
library("L0Learn")
library("bcp")
Loading required package: grid
library("changepoint")
Loading required package: zoo

Attaching package: 'zoo'
The following objects are masked from 'package:base':

    as.Date, as.Date.numeric
Successfully loaded changepoint package version 2.2.2
 NOTE: Predefined penalty values changed in version 2.2.  Previous penalty values with a postfix 1 i.e. SIC1 are now without i.e. SIC and previous penalties without a postfix i.e. SIC are now with a postfix 0 i.e. SIC0. See NEWS and help files for further details.
library("ggplot2")
library("DNAcopy")

# we set standardize to false because then the coefficients
# have a consistent interpretation as step size 
susie_cp = function(y,auto=FALSE,standardize=FALSE,...){
  n=length(y)
  X = matrix(0,nrow=n,ncol=n-1)
  for(j in 1:(n-1)){
    for(i in (j+1):n){
      X[i,j] = 1
    }
  }
  if(auto){
    s = susie_auto(X,y,standardize=standardize,...)
  } else {
    s = susie(X,y,standardize=standardize,...)
  }
  return(s)
}

#plot a time series y with confidence sets from susie fit s overlaid
# does - 0.5 so that singletons show up
# this is a ggplot version
susie_plot_cp = function(s,y){

  df<-data.frame(x = 1:length(y),y = y)
  CS = s$sets$cs

  p= ggplot(df) + geom_point(mapping=aes_string(x="x", y="y"))
  for(i in 1:length(CS)){
    p = p + annotate("rect", fill = "red", alpha = 0.5, 
        xmin = min(CS[[i]])-0.5, xmax = max(CS[[i]])+0.5,
        ymin = -Inf, ymax = Inf) 
  }
  p
}

# this is just a function to add the changepoints to a base grapics plot
plot_cs = function(s){
  CS = s$sets$cs
  for(i in 1:length(CS)){
    rect(min(CS[[i]]),-5,max(CS[[i]])+1,5,col = rgb(1,0,0,alpha=0.5),border=NA)
  }
}

#ggplot function for changepoint results
plot_cp = function(df){
  #unwritten!
}

get_obj = function(s){
  return(s$elbo[length(s$elbo)])
}

This is a wrapper for L0learn

# wrapper to apply L0Learn to changepoint analysis
#coordinate ascent may not work so well so I use the slower/better algorithm, CDPSI
l0_cp = function(y,algorithm="CDPSI",maxSuppSize=20,...){ 
  n=length(y)
  X = matrix(0,nrow=n,ncol=n-1)
  for(j in 1:(n-1)){
    for(i in (j+1):n){
      X[i,j] = 1
    }
  }
  y.l0.cv = L0Learn.cvfit(X,y,nFolds=5,seed=1,penalty="L0",maxSuppSize = maxSuppSize,algorithm=algorithm,...) 
  opt = which.min(y.l0.cv$cvMeans[[1]])
  yhat = predict(y.l0.cv, newx = X,lambda=y.l0.cv$fit$lambda[[1]][opt])
  return(list(fit = y.l0.cv$fit,yhat=yhat))
}

Here is a wrapper for trendfiltering:

tf_cp = function(x){
  x.tf = trendfilter(x,ord=0)
  x.tf.cv = cv.trendfilter(x.tf)
  opt = which(x.tf$lambda==x.tf.cv$lambda.min) #optimal value of lambda
  yhat= x.tf$fit[,opt]
  return(list(fit=x.tf,yhat =yhat))
}

Here is a wrapper for segment from DNAcopy:

segment_cp = function(x){
  res = segment(CNA(x,rep(1,length(x)),1:length(x)))
  yhat = rep(res$output$seg.mean,diff(c(0,res$output$loc.end)))
  return(list(fit=res,yhat=yhat))
}

Simple simulated example

This example comes from Killick and Eckley

set.seed(10)
eg1=list()
eg1$x=c(rnorm(100,0,1),rnorm(100,1,1),rnorm(100,0,1),rnorm(100,0.2,1)) 
eg1$true_mean = c(rep(0,100),rep(1,100),rep(0,100),rep(0.2,100))
apply_methods = function(data){
  # Susie
  fit.s = susie_cp(data$x)
  yhat.s = predict(fit.s)
  
  # bcp
  fit.bcp = bcp(data$x)
  yhat.bcp = fit.bcp$posterior.mean
  
  # L0Learn
  res.l0= l0_cp(data$x)
  fit.l0 = res.l0$fit
  yhat.l0 = res.l0$yhat
  
  # trendfilter
  res.tf = tf_cp(data$x)
  fit.tf = res.tf$fit
  yhat.tf = res.tf$yhat
  
  # changepoint
  fit.cp = cpt.mean(data$x,method="PELT")
  d = diff(c(0,cpts(fit.cp),length(data$x))) 
  yhat.cp = rep(coef(fit.cp)$mean,d)
  
  #segment
  res.segment = segment_cp(data$x)
  fit.segment = res.segment$fit
  yhat.segment = res.segment$yhat
  
  return(list(fit = list(susie=fit.s,bcp=fit.bcp,l0=fit.l0,tf=fit.tf, cp = fit.cp, segment = fit.segment), yhat = list(susie=yhat.s,bcp = yhat.bcp,l0=yhat.l0,tf=yhat.tf,cp = yhat.cp, segment = yhat.segment)))
}

plot_results = function(res,data){
  plot(data$x,col="gray")
  lines(data$true_mean)
  for(i in 1:length(res$yhat)){
    lines(res$yhat[[i]],col=(i+1),type="s",lwd=2)
  }
}

compute_error = function(res,data){
  mse=rep(0,length(res$yhat))
  for(i in 1:length(res$yhat)){
    mse[i] = mean((res$yhat[[i]]-data$true_mean)^2)
  }
  names(mse) <- names(res$yhat)
  mse
}

eg1.res = apply_methods(eg1)
Fold 1 ... Fold 2 ... Fold 3 ... Fold 4 ... Fold 5 ... 
Analyzing: Sample.1 
plot_results(eg1.res,eg1)
plot_cs(eg1.res$fit$susie)

Expand here to see past versions of unnamed-chunk-6-1.png:
Version Author Date
431c7b3 stephens999 2018-10-22
ef836ff stephens999 2018-10-22
07cb570 stephens999 2018-10-19
a45f3cd stephens999 2018-10-18

compute_error(eg1.res,eg1)
     susie        bcp         l0         tf         cp    segment 
0.03127789 0.03669960 0.22505358 0.04564223 0.03673359 0.03093324 

Compare PIPs of bcp and susie:

plot(eg1.res$fit$bcp$posterior.prob[-1], susie_get_PIP(eg1.res$fit$susie))

Expand here to see past versions of unnamed-chunk-7-1.png:
Version Author Date
431c7b3 stephens999 2018-10-22
ef836ff stephens999 2018-10-22
07cb570 stephens999 2018-10-19
a45f3cd stephens999 2018-10-18

plot(eg1.res$fit$bcp$posterior.prob[-1],col=3)
points(susie_get_PIP(eg1.res$fit$susie),col=2)

Expand here to see past versions of unnamed-chunk-7-2.png:
Version Author Date
431c7b3 stephens999 2018-10-22

Lai 2005 data

This is a real-data example from the changepoint package. Of course we do not know the truth here so cannot compute errors. But it is an interesting example because susie (run from default 0 initialization) misses a changepoint.

data(Lai2005fig4)
lai = list(x=Lai2005fig4[,5],true_mean = rep(NA,length(Lai2005fig4[,5])))

lai.res=apply_methods(lai)
Fold 1 ... Fold 2 ... Fold 3 ... Fold 4 ... Fold 5 ... 
Analyzing: Sample.1 
plot_results(lai.res,lai)
plot_cs(lai.res$fit$susie)

Expand here to see past versions of unnamed-chunk-8-1.png:
Version Author Date
431c7b3 stephens999 2018-10-22
ef836ff stephens999 2018-10-22
07cb570 stephens999 2018-10-19

Here we try initializing susie from the results from changepoint and genlasso:

s0.cp = susie_init_coef(cpts(lai.res$fit$cp),diff(unlist(coef(lai.res$fit$cp))),length(lai$x)-1)
lai.s.cp0 = susie_cp(lai$x,s_init=s0.cp,estimate_prior_variance=FALSE)
lai.s.cp = susie_cp(lai$x,s_init=lai.s.cp0,estimate_prior_variance=TRUE)

bhat = lai.res$fit$tf$beta[,10] #result with 10 changepoints
dhat = diff(bhat)
dhat = ifelse(abs(dhat)>1e-8, dhat,0)
s0.tf = susie_init_coef(which(dhat!=0),dhat[dhat!=0],length(lai$x)-1)
lai.s.tf0 = susie_cp(lai$x,s_init=s0.tf,estimate_prior_variance=FALSE)
lai.s.tf = susie_cp(lai$x,s_init=lai.s.tf0,estimate_prior_variance=TRUE)

plot(lai$x)
lines(predict(lai.s.cp),col=2,type="s")
lines(predict(lai.s.tf),col=3,type="s")
get_obj(lai.s.cp)
[1] -216.9681
get_obj(lai.s.tf)
[1] -250.555
plot_cs(lai.s.cp)
plot_cs(lai.s.tf)

Expand here to see past versions of unnamed-chunk-9-1.png:
Version Author Date
431c7b3 stephens999 2018-10-22
ef836ff stephens999 2018-10-22
07cb570 stephens999 2018-10-19

Simulation based on Lai et al

These data looked interesting because they seemed to be a bit challenging for some methods. But we do not know the truth of course. So I simulated some data based on the fit.

In the results here we see that trendfilter tends to include too many changepoints (not suprising); other methods produce similar results. The different behavior of bcp here vs the real data suggest to me that the real data may show non-gaussian residuals (eg that one outlier(?) point).

set.seed(1)
lai.mean = rep(unlist(coef(lai.res$fit$cp)),diff(c(0,cpts(lai.res$fit$cp),length(lai$x))))
lai.sd = sd(lai$x-lai.mean)
lai.sim = list(x=rnorm(length(lai.mean),lai.mean,lai.sd),true_mean=lai.mean)

lai.sim.res = apply_methods(lai.sim)
Fold 1 ... Fold 2 ... Fold 3 ... Fold 4 ... Fold 5 ... 
Analyzing: Sample.1 
plot_results(lai.sim.res,lai.sim)
plot_cs(lai.sim.res$fit$susie)

Expand here to see past versions of unnamed-chunk-10-1.png:
Version Author Date
431c7b3 stephens999 2018-10-22
ef836ff stephens999 2018-10-22
07cb570 stephens999 2018-10-19

compute_error(lai.sim.res,lai.sim)
      susie         bcp          l0          tf          cp     segment 
0.315497051 0.015219952 0.060841408 0.036559321 0.008346073 0.270791108 
s0.cp = susie_init_coef(cpts(lai.sim.res$fit$cp),diff(unlist(coef(lai.sim.res$fit$cp))),length(lai.sim$x)-1)

lai.sim.s.cp = susie_cp(lai.sim$x,s_init=s0.cp,estimate_prior_variance=FALSE)
lai.sim.s.cp2 = susie_cp(lai.sim$x,s_init=lai.sim.s.cp,estimate_prior_variance=TRUE)

plot_results(lai.sim.res,lai.sim)
plot_cs(lai.sim.s.cp2)

Expand here to see past versions of unnamed-chunk-11-1.png:
Version Author Date
431c7b3 stephens999 2018-10-22
ef836ff stephens999 2018-10-22
07cb570 stephens999 2018-10-19

mean((predict(lai.sim.s.cp2)-lai.sim$true_mean)^2)
[1] 0.008367509

Example from the BCP package

This one is described as a “hard” example (with one change point) in the bcp examples.

set.seed(5)
x <- rep(c(0,1), each=50)
eg2 = list(x = x +  rnorm(50, sd=1), true_mean = x)

eg2.res = apply_methods(eg2)
Fold 1 ... Fold 2 ... Fold 3 ... Fold 4 ... Fold 5 ... 
Analyzing: Sample.1 
plot_results(eg2.res,eg2)
plot_cs(eg2.res$fit$susie)
Warning in min(CS[[i]]): no non-missing arguments to min; returning Inf
Warning in max(CS[[i]]): no non-missing arguments to max; returning -Inf
Warning in min(CS[[i]]): no non-missing arguments to min; returning Inf
Warning in max(CS[[i]]): no non-missing arguments to max; returning -Inf

Expand here to see past versions of unnamed-chunk-12-1.png:
Version Author Date
431c7b3 stephens999 2018-10-22
07cb570 stephens999 2018-10-19

compute_error(eg2.res,eg2)
     susie        bcp         l0         tf         cp    segment 
0.05450532 0.13518020 0.28787237 0.35619464 0.01434871 0.26689895 

Try estimating prior variance of susie initialized from previous results; also try initializing from results of changepoint.

# estimate prior variance
eg2.s2 = susie_cp(eg2$x,s_init=eg2.res$fit$susie,estimate_prior_variance=TRUE)

# intialize from changepoint result
s0.cp = susie_init_coef(cpts(eg2.res$fit$cp),diff(unlist(coef(eg2.res$fit$cp))),length(eg2$x)-1)

eg2.s.cp = susie_cp(eg2$x,s_init=s0.cp,estimate_prior_variance=FALSE)
eg2.s.cp2 = susie_cp(eg2$x,s_init=eg2.s.cp,estimate_prior_variance=TRUE)


get_obj(eg2.s.cp2)
[1] -152.087
get_obj(eg2.s2)
[1] -152.6889
mean((predict(eg2.s.cp2)-eg2$true_mean)^2)
[1] 0.02936138
mean((predict(eg2.s2)-eg2$true_mean)^2)
[1] 0.0568752

DNA segmentation example from bcp package

This example comes from demo(coriell) in the bcp package.

data(coriell)
chrom11 <- list(x=as.vector(na.omit(coriell$Coriell.05296[coriell$Chromosome==11])))
chrom11$true_mean=rep(NA,length(chrom11$x))

chrom11.res = apply_methods(chrom11)
Fold 1 ... Fold 2 ... Fold 3 ... Fold 4 ... Fold 5 ... 
Analyzing: Sample.1 
plot_results(chrom11.res,chrom11)

Expand here to see past versions of unnamed-chunk-14-1.png:
Version Author Date
431c7b3 stephens999 2018-10-22
ef836ff stephens999 2018-10-22
07cb570 stephens999 2018-10-19

Try susie. Note that this example illustrates a case where a variable (here 66) occurs in multiple CSs… something we don’t yet fully understand the implications of I think.

  plot(chrom11$x, col="grey", pch=20, xlab="Location",
        ylab="Posterior Mean",
        main="Coriell chromosome 11 (DNAcopy)")
  lines(predict(chrom11.res$fit$susie),col=2,lwd=2)
  chrom11.res$fit$susie$sets
$cs
$cs$L1
[1] 66

$cs$L2
[1] 51

$cs$L3
[1] 63 64 66 67 68 69 70 71


$purity
   min.abs.corr mean.abs.corr median.abs.corr
L1    1.0000000      1.000000       1.0000000
L2    1.0000000      1.000000       1.0000000
L3    0.9105706      0.965819       0.9659186

$cs_index
[1] 1 2 3

$coverage
[1] 0.95
  plot_cs(chrom11.res$fit$susie)

Expand here to see past versions of unnamed-chunk-15-1.png:
Version Author Date
431c7b3 stephens999 2018-10-22
ef836ff stephens999 2018-10-22
07cb570 stephens999 2018-10-19

Compare different objectives:

An example from the DNAcopy segment function:

set.seed(51)
true_mean = rep(c(-0.2,0.1,1,-0.5,0.2,-0.5,0.1,-0.2),c(137,87,17,49,29,52,87,42))
genomdat = list(x = rnorm(500, sd=0.2) + true_mean, true_mean=true_mean)

genomdat.res = apply_methods(genomdat)
Fold 1 ... Fold 2 ... Fold 3 ... Fold 4 ... Fold 5 ... 
Analyzing: Sample.1 
plot_results(genomdat.res,genomdat)
plot_cs(genomdat.res$fit$susie)

Expand here to see past versions of unnamed-chunk-17-1.png:
Version Author Date
431c7b3 stephens999 2018-10-22
ef836ff stephens999 2018-10-22
07cb570 stephens999 2018-10-19

compute_error(genomdat.res,genomdat)
       susie          bcp           l0           tf           cp 
0.0015949911 0.0009007416 0.0031717817 0.0018339170 0.0961235912 
     segment 
0.0014030174 

This example from DNAcopy too. (commented out for now as takes too long.)

# data(coriell)
# 
# #Combine into one CNA object to prepare for analysis on Chromosomes 1-23
# 
# CNA.object <-CNA(cbind(coriell$Coriell.05296,coriell$Coriell.13330),coriell$Chromosome,coriell$Position,data.type="logratio",sampleid=c("c05296","c13330"))
# 
# s = susie_cp(CNA.object$c13330[!is.na(CNA.object$c13330)])
# plot(CNA.object$c13330[!is.na(CNA.object$c13330)])
# plot_cs(s)

Compare initializations

Here we systematically compare intializing with trendfilter solution (L=20, and cross-validation optimum) with susie_auto and regular susie (run in two steps, first estimating residual variance, then estimating prior variance - this is because I am concerned estimating prior variance straight away may miss things, partly because at time of writing susie_init_coef may not be quite correct - it sets coefficients based on unstandardized X, but internally X are standardized)

#runs susie from both regular trend-filtering initialization
compare_init = function(x,fit.tf){
  bhat = fit.tf$beta[,20] #result with 20 changepoints
  dhat = diff(bhat)
  dhat = ifelse(abs(dhat)>1e-8, dhat,0)
  s0.tf20 = susie_init_coef(which(dhat!=0),dhat[dhat!=0],length(x)-1)
  s0.tf20.2 = susie_cp(x,s_init=s0.tf20,estimate_prior_variance=FALSE)
  s.tf20 = susie_cp(x,s_init=s0.tf20.2,estimate_prior_variance=TRUE)
  
  fit.tf.cv = cv.trendfilter(fit.tf)
  opt = which(fit.tf$lambda==fit.tf.cv$lambda.min) #optimal value of lambda
  bhat = fit.tf$beta[,opt] #result with 20 changepoints
  dhat = diff(bhat)
  dhat = ifelse(abs(dhat)>1e-8, dhat,0)
  s0.tf = susie_init_coef(which(dhat!=0),dhat[dhat!=0],length(x)-1)
  s0.tf.2 = susie_cp(x,s_init=s0.tf,estimate_prior_variance=FALSE)
  s.tf = susie_cp(x,s_init=s0.tf.2,estimate_prior_variance=TRUE)
  
  
  s0 = susie_cp(x,estimate_prior_variance = FALSE)
  s1 = susie_cp(x,estimate_prior_variance = TRUE)
  
  s_auto = susie_cp(x,auto=TRUE)
  return(list(fit = list(tf20=s.tf20, tf=s.tf,s=s1,s_auto=s_auto), obj = list(tf20 = get_obj(s.tf20), tf=get_obj(s.tf),s = get_obj(s1),s_auto= get_obj(s_auto))))
}
compare_init(eg1$x,eg1.res$fit$tf)$obj
Fold 1 ... Fold 2 ... Fold 3 ... Fold 4 ... Fold 5 ... 
$tf20
[1] -570.5557

$tf
[1] -570.5558

$s
[1] -570.5559

$s_auto
[1] -570.5637
compare_init(lai$x,lai.res$fit$tf)$obj
Fold 1 ... Fold 2 ... Fold 3 ... Fold 4 ... Fold 5 ... 
$tf20
[1] -226.4172

$tf
[1] -226.6029

$s
[1] -250.5503

$s_auto
[1] -217.0181
compare_init(lai.sim$x,lai.sim.res$fit$tf)$obj
Fold 1 ... Fold 2 ... Fold 3 ... Fold 4 ... Fold 5 ... 
$tf20
[1] -200.0482

$tf
[1] -200.0483

$s
[1] -248.9327

$s_auto
[1] -216.9614
compare_init(eg2$x,eg2.res$fit$tf)$obj
Fold 1 ... Fold 2 ... Fold 3 ... Fold 4 ... Fold 5 ... 
$tf20
[1] -152.6792

$tf
[1] -152.668

$s
[1] -152.087

$s_auto
[1] -152.087
c11 = compare_init(chrom11$x,chrom11.res$fit$tf)
Fold 1 ... Fold 2 ... Fold 3 ... Fold 4 ... Fold 5 ... 
c11$obj
$tf20
[1] 172.5228

$tf
[1] 172.523

$s
[1] 156.4556

$s_auto
[1] 172.5233
compare_init(genomdat$x,genomdat.res$fit$tf)$obj
Fold 1 ... Fold 2 ... Fold 3 ... Fold 4 ... Fold 5 ... 
$tf20
[1] 42.98781

$tf
[1] 42.88485

$s
[1] 45.9114

$s_auto
[1] 43.65838

Session information

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: OS X El Capitan 10.11.6

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] grid      stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] DNAcopy_1.55.0    ggplot2_3.0.0     changepoint_2.2.2
 [4] zoo_1.8-4         bcp_4.0.3         L0Learn_1.0.7    
 [7] genlasso_1.4      igraph_1.2.2      Matrix_1.2-14    
[10] susieR_0.5.0.0347

loaded via a namespace (and not attached):
 [1] Rcpp_0.12.19      bindr_0.1.1       compiler_3.5.1   
 [4] pillar_1.3.0      git2r_0.23.0      plyr_1.8.4       
 [7] workflowr_1.1.1   R.methodsS3_1.7.1 R.utils_2.7.0    
[10] tools_3.5.1       digest_0.6.18     evaluate_0.12    
[13] tibble_1.4.2      gtable_0.2.0      lattice_0.20-35  
[16] pkgconfig_2.0.2   rlang_0.2.2       yaml_2.2.0       
[19] bindrcpp_0.2.2    withr_2.1.2       stringr_1.3.1    
[22] dplyr_0.7.7       knitr_1.20        tidyselect_0.2.5 
[25] rprojroot_1.3-2   glue_1.3.0        R6_2.3.0         
[28] rmarkdown_1.10    reshape2_1.4.3    purrr_0.2.5      
[31] magrittr_1.5      whisker_0.3-2     backports_1.1.2  
[34] scales_1.0.0      htmltools_0.3.6   assertthat_0.2.0 
[37] colorspace_1.3-2  stringi_1.2.4     lazyeval_0.2.1   
[40] munsell_0.5.0     crayon_1.3.4      R.oo_1.22.0      

This reproducible R Markdown analysis was created with workflowr 1.1.1